Data-Driven Minimax Optimization with Expectation Constraints

16 Feb 2022  ·  Shuoguang Yang, Xudong Li, Guanghui Lan ·

Attention to data-driven optimization approaches, including the well-known stochastic gradient descent method, has grown significantly over recent decades, but data-driven constraints have rarely been studied, because of the computational challenges of projections onto the feasible set defined by these hard constraints. In this paper, we focus on the non-smooth convex-concave stochastic minimax regime and formulate the data-driven constraints as expectation constraints. The minimax expectation constrained problem subsumes a broad class of real-world applications, including two-player zero-sum game and data-driven robust optimization. We propose a class of efficient primal-dual algorithms to tackle the minimax expectation-constrained problem, and show that our algorithms converge at the optimal rate of $\mathcal{O}(\frac{1}{\sqrt{N}})$. We demonstrate the practical efficiency of our algorithms by conducting numerical experiments on large-scale real-world applications.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here