Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators

29 Mar 2020  ·  Tobi Delbruck, Shih-Chii Liu ·

The energy consumed by running large deep neural networks (DNNs) on hardware accelerators is dominated by the need for lots of fast memory to store both states and weights. This large required memory is currently only economically viable through DRAM. Although DRAM is high-throughput and low-cost memory (costing 20X less than SRAM), its long random access latency is bad for the unpredictable access patterns in spiking neural networks (SNNs). In addition, accessing data from DRAM costs orders of magnitude more energy than doing arithmetic with that data. SNNs are energy-efficient if local memory is available and few spikes are generated. This paper reports on our developments over the last 5 years of convolutional and recurrent deep neural network hardware accelerators that exploit either spatial or temporal sparsity similar to SNNs but achieve SOA throughput, power efficiency and latency even with the use of DRAM for the required storage of the weights and states of large DNNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here