Data-driven Optimal Cost Selection for Distributionally Robust Optimization

19 May 2017Jose BlanchetYang KangFan ZhangKarthyek Murthy

Recently, (Blanchet, Kang, and Murhy 2016, and Blanchet, and Kang 2017) showed that several machine learning algorithms, such as square-root Lasso, Support Vector Machines, and regularized logistic regression, among many others, can be represented exactly as distributionally robust optimization (DRO) problems. The distributional uncertainty is defined as a neighborhood centered at the empirical distribution... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet