Data-driven Set-based Estimation of Polynomial Systems with Application to SIR Epidemics

8 Nov 2021  ·  Amr Alanwar, Muhammad Umar B. Niazi, Karl H. Johansson ·

This paper proposes a data-driven set-based estimation algorithm for a class of nonlinear systems with polynomial nonlinearities. Using the system's input-output data, the proposed method computes a set that guarantees the inclusion of the system's state in real-time. Although the system is assumed to be a polynomial type, the exact polynomial functions, and their coefficients are assumed to be unknown. To this end, the estimator relies on offline and online phases. The offline phase utilizes past input-output data to estimate a set of possible coefficients of the polynomial system. Then, using this estimated set of coefficients and the side information about the system, the online phase provides a set estimate of the state. Finally, the proposed methodology is evaluated through its application on SIR (Susceptible, Infected, Recovered) epidemic model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here