Dataset Fingerprints: Exploring Image Collections Through Data Mining

As the amount of visual data increases, so does the need for summarization tools that can be used to explore large image collections and to quickly get familiar with their content. In this paper, we propose dataset fingerprints, a new and powerful method based on data mining that extracts meaningful patterns from a set of images. The discovered patterns are compositions of discriminative mid-level features that co-occur in several images. Compared to earlier work, ours stands out because i) it's fully unsupervised, ii) discovered patterns cover large parts of the images,often corresponding to full objects or meaningful parts thereof, and iii) different patterns are connected based on co-occurrence, allowing a user to ``browse'' / ``surf'' the images from one pattern to the next and to group patterns in a semantically meaningful manner.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here