We give algorithms for estimating the expectation of a given real-valued function $\phi:X\to {\bf R}$ on a sample drawn randomly from some unknown distribution $D$ over domain $X$, namely ${\bf E}_{{\bf x}\sim D}[\phi({\bf x})]$. Our algorithms work in two well-studied models of restricted access to data samples... (read more)
PDF AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |