Debiasing Word Embeddings Improves Multimodal Machine Translation

WS 2019 Tosho HirasawaMamoru Komachi

In recent years, pretrained word embeddings have proved useful for multimodal neural machine translation (NMT) models to address the shortage of available datasets. However, the integration of pretrained word embeddings has not yet been explored extensively... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet