Decentralized Topic Modelling with Latent Dirichlet Allocation

5 Oct 2016  ·  Igor Colin, Christophe Dupuy ·

Privacy preserving networks can be modelled as decentralized networks (e.g., sensors, connected objects, smartphones), where communication between nodes of the network is not controlled by an all-knowing, central node. For this type of networks, the main issue is to gather/learn global information on the network (e.g., by optimizing a global cost function) while keeping the (sensitive) information at each node. In this work, we focus on text information that agents do not want to share (e.g., text messages, emails, confidential reports). We use recent advances on decentralized optimization and topic models to infer topics from a graph with limited communication. We propose a method to adapt latent Dirichlet allocation (LDA) model to decentralized optimization and show on synthetic data that we still recover similar parameters and similar performance at each node than with stochastic methods accessing to the whole information in the graph.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here