Deciding Monotone Duality and Identifying Frequent Itemsets in Quadratic Logspace

9 Dec 2012Georg Gottlob

The monotone duality problem is defined as follows: Given two monotone formulas f and g in iredundant DNF, decide whether f and g are dual. This problem is the same as duality testing for hypergraphs, that is, checking whether a hypergraph H consists of precisely all minimal transversals of a simple hypergraph G. By exploiting a recent problem-decomposition method by Boros and Makino (ICALP 2009), we show that duality testing for hypergraphs, and thus for monotone DNFs, is feasible in DSPACE[log^2 n], i.e., in quadratic logspace... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet