Decoder-tailored Polar Code Design Using the Genetic Algorithm

We propose a new framework for constructing polar codes (i.e., selecting the frozen bit positions) for arbitrary channels, and tailored to a given decoding algorithm, rather than based on the (not necessarily optimal) assumption of successive cancellation (SC) decoding. The proposed framework is based on the Genetic Algorithm (GenAlg), where populations (i.e., collections) of information sets evolve successively via evolutionary transformations based on their individual error-rate performance... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet