Decomposing Isotonic Regression for Efficiently Solving Large Problems

NeurIPS 2010  ·  Ronny Luss, Saharon Rosset, Moni Shahar ·

A new algorithm for isotonic regression is presented based on recursively partitioning the solution space. We develop efficient methods for each partitioning subproblem through an equivalent representation as a network flow problem, and prove that this sequence of partitions converges to the global solution. These network flow problems can further be decomposed in order to solve very large problems. Success of isotonic regression in prediction and our algorithm's favorable computational properties are demonstrated through simulated examples as large as 2x10^5 variables and 10^7 constraints.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here