Deep Actor-Critic Learning for Distributed Power Control in Wireless Mobile Networks

14 Sep 2020  ·  Yasar Sinan Nasir, Dongning Guo ·

Deep reinforcement learning offers a model-free alternative to supervised deep learning and classical optimization for solving the transmit power control problem in wireless networks. The multi-agent deep reinforcement learning approach considers each transmitter as an individual learning agent that determines its transmit power level by observing the local wireless environment. Following a certain policy, these agents learn to collaboratively maximize a global objective, e.g., a sum-rate utility function. This multi-agent scheme is easily scalable and practically applicable to large-scale cellular networks. In this work, we present a distributively executed continuous power control algorithm with the help of deep actor-critic learning, and more specifically, by adapting deep deterministic policy gradient. Furthermore, we integrate the proposed power control algorithm to a time-slotted system where devices are mobile and channel conditions change rapidly. We demonstrate the functionality of the proposed algorithm using simulation results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here