Deep Adversarial Network Alignment

27 Feb 2019  ·  Tyler Derr, Hamid Karimi, Xiaorui Liu, Jiejun Xu, Jiliang Tang ·

Network alignment, in general, seeks to discover the hidden underlying correspondence between nodes across two (or more) networks when given their network structure. However, most existing network alignment methods have added assumptions of additional constraints to guide the alignment, such as having a set of seed node-node correspondences across the networks or the existence of side-information. Instead, we seek to develop a general network alignment algorithm that makes no additional assumptions. Recently, network embedding has proven effective in many network analysis tasks, but embeddings of different networks are not aligned. Thus, we present our Deep Adversarial Network Alignment (DANA) framework that first uses deep adversarial learning to discover complex mappings for aligning the embedding distributions of the two networks. Then, using our learned mapping functions, DANA performs an efficient nearest neighbor node alignment. We perform experiments on real world datasets to show the effectiveness of our framework for first aligning the graph embedding distributions and then discovering node alignments that outperform existing methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here