Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

ICLR 2018  ยท  Carlos Riquelme, George Tucker, Jasper Snoek ยท

Recent advances in deep reinforcement learning have made significant strides in performance on applications such as Go and Atari games. However, developing practical methods to balance exploration and exploitation in complex domains remains largely unsolved. Thompson Sampling and its extension to reinforcement learning provide an elegant approach to exploration that only requires access to posterior samples of the model. At the same time, advances in approximate Bayesian methods have made posterior approximation for flexible neural network models practical. Thus, it is attractive to consider approximate Bayesian neural networks in a Thompson Sampling framework. To understand the impact of using an approximate posterior on Thompson Sampling, we benchmark well-established and recently developed methods for approximate posterior sampling combined with Thompson Sampling over a series of contextual bandit problems. We found that many approaches that have been successful in the supervised learning setting underperformed in the sequential decision-making scenario. In particular, we highlight the challenge of adapting slowly converging uncertainty estimates to the online setting.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Multi-Armed Bandits Mushroom Linear FullPosterior-MR Cumulative regret 1.82 # 1
Multi-Armed Bandits Mushroom NeuralLinear FullPosterior-MR Cumulative regret 1.92 # 2

Methods


No methods listed for this paper. Add relevant methods here