Deep BCD-Net Using Identical Encoding-Decoding CNN Structures for Iterative Image Recovery

20 Feb 2018  ·  Il Yong Chun, Jeffrey A. Fessler ·

In "extreme" computational imaging that collects extremely undersampled or noisy measurements, obtaining an accurate image within a reasonable computing time is challenging. Incorporating image mapping convolutional neural networks (CNN) into iterative image recovery has great potential to resolve this issue. This paper 1) incorporates image mapping CNN using identical convolutional kernels in both encoders and decoders into a block coordinate descent (BCD) signal recovery method and 2) applies alternating direction method of multipliers to train the aforementioned image mapping CNN. We refer to the proposed recurrent network as BCD-Net using identical encoding-decoding CNN structures. Numerical experiments show that, for a) denoising low signal-to-noise-ratio images and b) extremely undersampled magnetic resonance imaging, the proposed BCD-Net achieves significantly more accurate image recovery, compared to BCD-Net using distinct encoding-decoding structures and/or the conventional image recovery model using both wavelets and total variation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here