Deep Contextualized Acoustic Representations For Semi-Supervised Speech Recognition

3 Dec 2019  ·  Shaoshi Ling, Yuzong Liu, Julian Salazar, Katrin Kirchhoff ·

We propose a novel approach to semi-supervised automatic speech recognition (ASR). We first exploit a large amount of unlabeled audio data via representation learning, where we reconstruct a temporal slice of filterbank features from past and future context frames. The resulting deep contextualized acoustic representations (DeCoAR) are then used to train a CTC-based end-to-end ASR system using a smaller amount of labeled audio data. In our experiments, we show that systems trained on DeCoAR consistently outperform ones trained on conventional filterbank features, giving 42% and 19% relative improvement over the baseline on WSJ eval92 and LibriSpeech test-clean, respectively. Our approach can drastically reduce the amount of labeled data required; unsupervised training on LibriSpeech then supervision with 100 hours of labeled data achieves performance on par with training on all 960 hours directly. Pre-trained models and code will be released online.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here