Paper

Deep Directed Generative Autoencoders

For discrete data, the likelihood $P(x)$ can be rewritten exactly and parametrized into $P(X = x) = P(X = x | H = f(x)) P(H = f(x))$ if $P(X | H)$ has enough capacity to put no probability mass on any $x'$ for which $f(x')\neq f(x)$, where $f(\cdot)$ is a deterministic discrete function. The log of the first factor gives rise to the log-likelihood reconstruction error of an autoencoder with $f(\cdot)$ as the encoder and $P(X|H)$ as the (probabilistic) decoder. The log of the second term can be seen as a regularizer on the encoded activations $h=f(x)$, e.g., as in sparse autoencoders. Both encoder and decoder can be represented by a deep neural network and trained to maximize the average of the optimal log-likelihood $\log p(x)$. The objective is to learn an encoder $f(\cdot)$ that maps $X$ to $f(X)$ that has a much simpler distribution than $X$ itself, estimated by $P(H)$. This "flattens the manifold" or concentrates probability mass in a smaller number of (relevant) dimensions over which the distribution factorizes. Generating samples from the model is straightforward using ancestral sampling. One challenge is that regular back-propagation cannot be used to obtain the gradient on the parameters of the encoder, but we find that using the straight-through estimator works well here. We also find that although optimizing a single level of such architecture may be difficult, much better results can be obtained by pre-training and stacking them, gradually transforming the data distribution into one that is more easily captured by a simple parametric model.

Results in Papers With Code
(↓ scroll down to see all results)