Deep Embedding Learning With Discriminative Sampling Policy

CVPR 2019  ·  Yueqi Duan, Lei Chen, Jiwen Lu, Jie Zhou ·

Deep embedding learning aims to learn a distance metric for effective similarity measurement, which has achieved promising performance in various tasks. As the vast majority of training samples produce gradients with magnitudes close to zero, hard example mining is usually employed to improve the effectiveness and efficiency of the training procedure. However, most existing sampling methods are designed by hand, which ignores the dependence between examples and suffer from exhaustive searching. In this paper, we propose a deep embedding with discriminative sampling policy (DE-DSP) learning framework by simultaneously training two models: a deep sampler network that learns effective sampling strategies, and a feature embedding that maps samples to the feature space. Rather than exhaustively calculating the hardness of all the examples for mining through forward-propagation, the deep sampler network exploits the strong prior of relations among samples to learn discriminative sampling policy in an more efficient manner. Experimental results demonstrate faster convergence and stronger discriminative power of our DE-DSP framework under different embedding objectives.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here