Deep Epitomic Convolutional Neural Networks

10 Jun 2014  ·  George Papandreou ·

Deep convolutional neural networks have recently proven extremely competitive in challenging image recognition tasks. This paper proposes the epitomic convolution as a new building block for deep neural networks. An epitomic convolution layer replaces a pair of consecutive convolution and max-pooling layers found in standard deep convolutional neural networks. The main version of the proposed model uses mini-epitomes in place of filters and computes responses invariant to small translations by epitomic search instead of max-pooling over image positions. The topographic version of the proposed model uses large epitomes to learn filter maps organized in translational topographies. We show that error back-propagation can successfully learn multiple epitomic layers in a supervised fashion. The effectiveness of the proposed method is assessed in image classification tasks on standard benchmarks. Our experiments on Imagenet indicate improved recognition performance compared to standard convolutional neural networks of similar architecture. Our models pre-trained on Imagenet perform excellently on Caltech-101. We also obtain competitive image classification results on the small-image MNIST and CIFAR-10 datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods