O$n$ Learning Deep O($n$)-Equivariant Hyperspheres

24 May 2023  ·  Pavlo Melnyk, Michael Felsberg, Mårten Wadenbäck, Andreas Robinson, Cuong Le ·

In this paper, we utilize hyperspheres and regular $n$-simplexes and propose an approach to learning deep features equivariant under the transformations of $n$D reflections and rotations, encompassed by the powerful group of O$(n)$. Namely, we propose O$(n)$-equivariant neurons with spherical decision surfaces that generalize to any dimension $n$, which we call Deep Equivariant Hyperspheres. We demonstrate how to combine them in a network that directly operates on the basis of the input points and propose an invariant operator based on the relation between two points and a sphere, which as we show, turns out to be a Gram matrix. Using synthetic and real-world data in $n$D, we experimentally verify our theoretical contributions and find that our approach is superior to the competing methods for O$(n)$-equivariant benchmark datasets (classification and regression), demonstrating a favorable speed/performance trade-off. The code is available at https://github.com/pavlo-melnyk/equivariant-hyperspheres.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here