Deep Fully-Connected Networks for Video Compressive Sensing

16 Mar 2016  ·  Michael Iliadis, Leonidas Spinoulas, Aggelos K. Katsaggelos ·

In this work we present a deep learning framework for video compressive sensing. The proposed formulation enables recovery of video frames in a few seconds at significantly improved reconstruction quality compared to previous approaches... Our investigation starts by learning a linear mapping between video sequences and corresponding measured frames which turns out to provide promising results. We then extend the linear formulation to deep fully-connected networks and explore the performance gains using deeper architectures. Our analysis is always driven by the applicability of the proposed framework on existing compressive video architectures. Extensive simulations on several video sequences document the superiority of our approach both quantitatively and qualitatively. Finally, our analysis offers insights into understanding how dataset sizes and number of layers affect reconstruction performance while raising a few points for future investigation. Code is available at Github: https://github.com/miliadis/DeepVideoCS read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here