Deep Gaussian Processes with Decoupled Inducing Inputs

9 Jan 2018  ·  Marton Havasi, José Miguel Hernández-Lobato, Juan José Murillo-Fuentes ·

Deep Gaussian Processes (DGP) are hierarchical generalizations of Gaussian Processes (GP) that have proven to work effectively on a multiple supervised regression tasks. They combine the well calibrated uncertainty estimates of GPs with the great flexibility of multilayer models... In DGPs, given the inputs, the outputs of the layers are Gaussian distributions parameterized by their means and covariances. These layers are realized as Sparse GPs where the training data is approximated using a small set of pseudo points. In this work, we show that the computational cost of DGPs can be reduced with no loss in performance by using a separate, smaller set of pseudo points when calculating the layerwise variance while using a larger set of pseudo points when calculating the layerwise mean. This enabled us to train larger models that have lower cost and better predictive performance. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here