Deep Generative Model for Joint Alignment and Word Representation

NAACL 2018  ·  Miguel Rios, Wilker Aziz, Khalil Sima'an ·

This work exploits translation data as a source of semantically relevant learning signal for models of word representation. In particular, we exploit equivalence through translation as a form of distributed context and jointly learn how to embed and align with a deep generative model. Our EmbedAlign model embeds words in their complete observed context and learns by marginalisation of latent lexical alignments. Besides, it embeds words as posterior probability densities, rather than point estimates, which allows us to compare words in context using a measure of overlap between distributions (e.g. KL divergence). We investigate our model's performance on a range of lexical semantics tasks achieving competitive results on several standard benchmarks including natural language inference, paraphrasing, and text similarity.

PDF Abstract NAACL 2018 PDF NAACL 2018 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here