Deep Generative Models with Learnable Knowledge Constraints

The broad set of deep generative models (DGMs) has achieved remarkable advances. However, it is often difficult to incorporate rich structured domain knowledge with the end-to-end DGMs. Posterior regularization (PR) offers a principled framework to impose structured constraints on probabilistic models, but has limited applicability to the diverse DGMs that can lack a Bayesian formulation or even explicit density evaluation. PR also requires constraints to be fully specified a priori, which is impractical or suboptimal for complex knowledge with learnable uncertain parts. In this paper, we establish mathematical correspondence between PR and reinforcement learning (RL), and, based on the connection, expand PR to learn constraints as the extrinsic reward in RL. The resulting algorithm is model-agnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with the model jointly. Experiments on human image generation and templated sentence generation show models with learned knowledge constraints by our algorithm greatly improve over base generative models.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here