Deep High Dynamic Range Imaging with Large Foreground Motions

This paper proposes the first non-flow-based deep framework for high dynamic range (HDR) imaging of dynamic scenes with large-scale foreground motions. In state-of-the-art deep HDR imaging, input images are first aligned using optical flows before merging, which are still error-prone due to occlusion and large motions. In stark contrast to flow-based methods, we formulate HDR imaging as an image translation problem without optical flows. Moreover, our simple translation network can automatically hallucinate plausible HDR details in the presence of total occlusion, saturation and under-exposure, which are otherwise almost impossible to recover by conventional optimization approaches. Our framework can also be extended for different reference images. We performed extensive qualitative and quantitative comparisons to show that our approach produces excellent results where color artifacts and geometric distortions are significantly reduced compared to existing state-of-the-art methods, and is robust across various inputs, including images without radiometric calibration.

PDF Abstract ECCV 2018 PDF ECCV 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here