Deep Inferential Spatial-Temporal Network for Forecasting Air Pollution Concentrations

11 Sep 2018  ·  Hao Wang, Bojin Zhuang, Yang Chen, Ni Li, Dongxia Wei ·

Air pollution poses a serious threat to human health as well as economic development around the world. To meet the increasing demand for accurate predictions for air pollutions, we proposed a Deep Inferential Spatial-Temporal Network to deal with the complicated non-linear spatial and temporal correlations. We forecast three air pollutants (i.e., PM2.5, PM10 and O3) of monitoring stations over the next 48 hours, using a hybrid deep learning model consists of inferential predictor (inference for regions without air pollution readings), spatial predictor (capturing spatial correlations using CNN) and temporal predictor (capturing temporal relationship using sequence-to-sequence model with simplified attention mechanism). Our proposed model considers historical air pollution records and historical meteorological data. We evaluate our model on a large-scale dataset containing air pollution records of 35 monitoring stations and grid meteorological data in Beijing, China. Our model outperforms other state-of-art methods in terms of SMAPE and RMSE.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here