Deep iterative vessel segmentation in OCT angiography

This paper addresses retinal vessel segmentation on optical coherence tomography angiography (OCT-A) images of the human retina. Our approach is motivated by the need for high precision image-guided delivery of regenerative therapies in vitreo-retinal surgery. OCT-A visualizes macular vasculature, the main landmark of the surgically targeted area, at a level of detail and spatial extent unattainable by other imaging modalities. Thus, automatic extraction of detailed vessel maps can ultimately inform surgical planning. We address the task of delineation of the Superficial Vascular Plexus in 2D Maximum Intensity Projections (MIP) of OCT-A using convolutional neural networks that iteratively refine the quality of the produced vessel segmentations. We demonstrate that the proposed approach compares favourably to alternative network baselines and graph-based methodologies through extensive experimental analysis, using data collected from 50 subjects, including both individuals that underwent surgery for structural macular abnormalities and healthy subjects. Additionally, we demonstrate generalization to 3D segmentation and narrower field-of-view OCT-A. In the future, the extracted vessel maps will be leveraged for surgical planning and semi-automated intraoperative navigation in vitreo-retinal surgery.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here