DeeP-LCC: Data-EnablEd Predictive Leading Cruise Control in Mixed Traffic Flow

20 Mar 2022  ·  Jiawei Wang, Yang Zheng, Keqiang Li, Qing Xu ·

For the control of connected and autonomous vehicles (CAVs), most existing methods focus on model-based strategies. They require explicit knowledge of car-following dynamics of human-driven vehicles that are non-trivial to identify accurately. In this paper, instead of relying on a parametric car-following model, we introduce a data-driven non-parametric strategy, called DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control), to achieve safe and optimal control of CAVs in mixed traffic. We first utilize Willems' fundamental lemma to obtain a data-centric representation of mixed traffic behavior. This is justified by rigorous analysis on controllability and observability properties of mixed traffic. We then employ a receding horizon strategy to solve a finite-horizon optimal control problem at each time step, in which input/output constraints are incorporated for collision-free guarantees. Numerical experiments validate the performance of DeeP-LCC compared to a standard predictive controller that requires an accurate model. Multiple nonlinear traffic simulations further confirm its great potential on improving traffic efficiency, driving safety, and fuel economy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here