Deep Learning as a Tool to Predict Flow Patterns in Two-Phase Flow
In order to better model complex real-world data such as multiphase flow, one approach is to develop pattern recognition techniques and robust features that capture the relevant information. In this paper, we use deep learning methods, and in particular employ the multilayer perceptron, to build an algorithm that can predict flow pattern in twophase flow from fluid properties and pipe conditions. The preliminary results show excellent performance when compared with classical methods of flow pattern prediction.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here