Deep-Learning Based Blind Recognition of Channel Code Parameters over Candidate Sets under AWGN and Multi-Path Fading Conditions

16 Sep 2020  ·  Sepehr Dehdashtian, Matin Hashemi, Saber Salehkaleybar ·

We consider the problem of recovering channel code parameters over a candidate set by merely analyzing the received encoded signals. We propose a deep learning-based solution that I) is capable of identifying the channel code parameters for any coding scheme (such as LDPC, Convolutional, Turbo, and Polar codes), II) is robust against channel impairments like multi-path fading, III) does not require any previous knowledge or estimation of channel state or signal-to-noise ratio (SNR), and IV) outperforms related works in terms of probability of detecting the correct code parameters...

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here