Deep Learning based Cephalometric Landmark Identification using Landmark-dependent Multi-scale Patches

7 Jun 2019Chonho LeeChihiro TanikawaJae-Yeon LimTakashi Yamashiro

A deep neural network based cephalometric landmark identification model is proposed. Two neural networks, named patch classification and point estimation, are trained by multi-scale image patches cropped from 935 Cephalograms (of Japanese young patients), whose size and orientation vary based on landmark-dependent criteria examined by orthodontists... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet