Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing

24 Jul 2019  ·  Jian Liang, Zhe Xu, Peter Li ·

We propose a new forward-backward stochastic differential equation solver for high-dimensional derivatives pricing problems by combining deep learning solver with least square regression technique widely used in the least square Monte Carlo method for the valuation of American options. Our numerical experiments demonstrate the efficiency and accuracy of our least square backward deep neural network solver and its capability to provide accurate prices for complex early exercise derivatives such as callable yield notes. Our method can serve as a generic numerical solver for pricing derivatives across various asset groups, in particular, as an efficient means for pricing high-dimensional derivatives with early exercises features.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here