Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations

15 Jun 2017  ·  Weinan E, Jiequn Han, Arnulf Jentzen ·

We propose a new algorithm for solving parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) in high dimension, by making an analogy between the BSDE and reinforcement learning with the gradient of the solution playing the role of the policy function, and the loss function given by the error between the prescribed terminal condition and the solution of the BSDE. The policy function is then approximated by a neural network, as is done in deep reinforcement learning. Numerical results using TensorFlow illustrate the efficiency and accuracy of the proposed algorithms for several 100-dimensional nonlinear PDEs from physics and finance such as the Allen-Cahn equation, the Hamilton-Jacobi-Bellman equation, and a nonlinear pricing model for financial derivatives.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here