Deep Learning-based Universal Beamformer for Ultrasound Imaging

5 Apr 2019  ·  Shujaat Khan, Jaeyoung Huh, Jong Chul Ye ·

In ultrasound (US) imaging, individual channel RF measurements are back-propagated and accumulated to form an image after applying specific delays. While this time reversal is usually implemented using a hardware- or software-based delay-and-sum (DAS) beamformer, the performance of DAS decreases rapidly in situations where data acquisition is not ideal. Herein, for the first time, we demonstrate that a single data-driven adaptive beamformer designed as a deep neural network can generate high quality images robustly for various detector channel configurations and subsampling rates. The proposed deep beamformer is evaluated for two distinct acquisition schemes: focused ultrasound imaging and planewave imaging. Experimental results showed that the proposed deep beamformer exhibit significant performance gain for both focused and planar imaging schemes, in terms of contrast-to-noise ratio and structural similarity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here