Deep Learning: Computational Aspects
In this article we review computational aspects of Deep Learning (DL). Deep learning uses network architectures consisting of hierarchical layers of latent variables to construct predictors for high-dimensional input-output models. Training a deep learning architecture is computationally intensive, and efficient linear algebra libraries is the key for training and inference. Stochastic gradient descent (SGD) optimization and batch sampling are used to learn from massive data sets.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here