Deep Learning: Computational Aspects

26 Aug 2018  ·  Nicholas Polson, Vadim Sokolov ·

In this article we review computational aspects of Deep Learning (DL). Deep learning uses network architectures consisting of hierarchical layers of latent variables to construct predictors for high-dimensional input-output models. Training a deep learning architecture is computationally intensive, and efficient linear algebra libraries is the key for training and inference. Stochastic gradient descent (SGD) optimization and batch sampling are used to learn from massive data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here