Deep Learning for Classification and Severity Estimation of Coffee Leaf Biotic Stress

26 Jul 2019  ·  J. G. M. Esgario, R. A. Krohling, J. A. Ventura ·

Biotic stress consists of damage to plants through other living organisms. Efficient control of biotic agents such as pests and pathogens (viruses, fungi, bacteria, etc.) is closely related to the concept of agricultural sustainability. Agricultural sustainability promotes the development of new technologies that allow the reduction of environmental impacts, greater accessibility to farmers and, consequently, increase on productivity. The use of computer vision with deep learning methods allows the early and correct identification of the stress-causing agent. So, corrective measures can be applied as soon as possible to mitigate the problem. The objective of this work is to design an effective and practical system capable of identifying and estimating the stress severity caused by biotic agents on coffee leaves. The proposed approach consists of a multi-task system based on convolutional neural networks. In addition, we have explored the use of data augmentation techniques to make the system more robust and accurate. The experimental results obtained for classification as well as for severity estimation indicate that the proposed system might be a suitable tool to assist both experts and farmers in the identification and quantification of biotic stresses in coffee plantations.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here