Deep Learning Logo Detection with Data Expansion by Synthesising Context

29 Dec 2016 Hang Su Xiatian Zhu Shaogang Gong

Logo detection in unconstrained images is challenging, particularly when only very sparse labelled training images are accessible due to high labelling costs. In this work, we describe a model training image synthesising method capable of improving significantly logo detection performance when only a handful of (e.g., 10) labelled training images captured in realistic context are available, avoiding extensive manual labelling costs... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet