Deep Learning of High-Order Interactions for Protein Interface Prediction

18 Jul 2020  ·  Yi Liu, Hao Yuan, Lei Cai, Shuiwang Ji ·

Protein interactions are important in a broad range of biological processes. Traditionally, computational methods have been developed to automatically predict protein interface from hand-crafted features. Recent approaches employ deep neural networks and predict the interaction of each amino acid pair independently. However, these methods do not incorporate the important sequential information from amino acid chains and the high-order pairwise interactions. Intuitively, the prediction of an amino acid pair should depend on both their features and the information of other amino acid pairs. In this work, we propose to formulate the protein interface prediction as a 2D dense prediction problem. In addition, we propose a novel deep model to incorporate the sequential information and high-order pairwise interactions to perform interface predictions. We represent proteins as graphs and employ graph neural networks to learn node features. Then we propose the sequential modeling method to incorporate the sequential information and reorder the feature matrix. Next, we incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions. Finally, we employ convolutional neural networks to perform 2D dense predictions. Experimental results on multiple benchmarks demonstrate that our proposed method can consistently improve the protein interface prediction performance.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here