Deep Learning Under the Microscope: Improving the Interpretability of Medical Imaging Neural Networks

In this paper, we propose a novel interpretation method tailored to histological Whole Slide Image (WSI) processing. A Deep Neural Network (DNN), inspired by Bag-of-Features models is equipped with a Multiple Instance Learning (MIL) branch and trained with weak supervision for WSI classification. MIL avoids label ambiguity and enhances our model's expressive power without guiding its attention. We utilize a fine-grained logit heatmap of the models activations to interpret its decision-making process. The proposed method is quantitatively and qualitatively evaluated on two challenging histology datasets, outperforming a variety of baselines. In addition, two expert pathologists were consulted regarding the interpretability provided by our method and acknowledged its potential for integration into several clinical applications.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.