Deep Learning with Energy-efficient Binary Gradient Cameras

3 Dec 2016  ·  Suren Jayasuriya, Orazio Gallo, Jinwei Gu, Jan Kautz ·

Power consumption is a critical factor for the deployment of embedded computer vision systems. We explore the use of computational cameras that directly output binary gradient images to reduce the portion of the power consumption allocated to image sensing. We survey the accuracy of binary gradient cameras on a number of computer vision tasks using deep learning. These include object recognition, head pose regression, face detection, and gesture recognition. We show that, for certain applications, accuracy can be on par or even better than what can be achieved on traditional images. We are also the first to recover intensity information from binary spatial gradient images--useful for applications with a human observer in the loop, such as surveillance. Our results, which we validate with a prototype binary gradient camera, point to the potential of gradient-based computer vision systems.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here