Deep Learning with Kernel Regularization for Visual Recognition

NeurIPS 2008  ·  Kai Yu, Wei Xu, Yihong Gong ·

In this paper we focus on training deep neural networks for visual recognition tasks. One challenge is the lack of an informative regularization on the network parameters, to imply a meaningful control on the computed function. We propose a training strategy that takes advantage of kernel methods, where an existing kernel function represents useful prior knowledge about the learning task of interest. We derive an efficient algorithm using stochastic gradient descent, and demonstrate very positive results in a wide range of visual recognition tasks.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here