Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels

27 May 2017Benjamin J. MeyerBen HarwoodTom Drummond

We present a Gaussian kernel loss function and training algorithm for convolutional neural networks that can be directly applied to both distance metric learning and image classification problems. Our method treats all training features from a deep neural network as Gaussian kernel centres and computes loss by summing the influence of a feature's nearby centres in the feature embedding space... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper