Deep Metric Learning via Adaptive Learnable Assessment

CVPR 2020 Wenzhao Zheng Jiwen Lu Jie Zhou

In this paper, we propose a deep metric learning via adaptive learnable assessment (DML-ALA) method for image retrieval and clustering, which aims to learn a sample assessment strategy to maximize the generalization of the trained metric. Unlike existing deep metric learning methods that usually utilize a fixed sampling strategy like hard negative mining, we propose a sequence-aware learnable assessor which re-weights each training example to train the metric towards good generalization... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet