Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from Brain MRIs

22 Oct 2022  ·  Paul K. Mandal, Rakesh Mahto ·

Alzheimer's disease (AD) is a neuro-degenerative disease that can cause dementia and result severe reduction in brain function inhibiting simple tasks especially if no preventative care is taken. Over 1 in 9 Americans suffer from AD induced dementia and unpaid care for people with AD related dementia is valued at $271.6 billion. Hence, various approaches have been developed for early AD diagnosis to prevent its further progression. In this paper, we first review other approaches that could be used for early detection of AD. We then give an overview of our dataset that was from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and propose a deep Convolutional Neural Network (CNN) architecture consisting of 7,866,819 parameters. This model has three different convolutional branches with each having a different length. Each branch is comprised of different kernel sizes. This model can predict whether a patient is non-demented, mild-demented, or moderately demented with a 99.05% three class accuracy.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here