Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories

14 Jun 2018Ian FoxLynn AngMamta JaiswalRodica Pop-BusuiJenna Wiens

In many forecasting applications, it is valuable to predict not only the value of a signal at a certain time point in the future, but also the values leading up to that point. This is especially true in clinical applications, where the future state of the patient can be less important than the patient's overall trajectory... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet