Deep Multimodal Semantic Embeddings for Speech and Images

11 Nov 2015 David Harwath James Glass

In this paper, we present a model which takes as input a corpus of images with relevant spoken captions and finds a correspondence between the two modalities. We employ a pair of convolutional neural networks to model visual objects and speech signals at the word level, and tie the networks together with an embedding and alignment model which learns a joint semantic space over both modalities... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet