Deep Neural Network for Real-Time Autonomous Indoor Navigation

15 Nov 2015  ·  Dong Ki Kim, Tsuhan Chen ·

Autonomous indoor navigation of Micro Aerial Vehicles (MAVs) possesses many challenges. One main reason is that GPS has limited precision in indoor environments. The additional fact that MAVs are not able to carry heavy weight or power consuming sensors, such as range finders, makes indoor autonomous navigation a challenging task. In this paper, we propose a practical system in which a quadcopter autonomously navigates indoors and finds a specific target, i.e., a book bag, by using a single camera. A deep learning model, Convolutional Neural Network (ConvNet), is used to learn a controller strategy that mimics an expert pilot's choice of action. We show our system's performance through real-time experiments in diverse indoor locations. To understand more about our trained network, we use several visualization techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here