Deep neural network initialization with decision trees

3 Jul 2017  ·  K. D. Humbird, J. L. Peterson, R. G. McClarren ·

In this work a novel, automated process for constructing and initializing deep feed-forward neural networks based on decision trees is presented. The proposed algorithm maps a collection of decision trees trained on the data into a collection of initialized neural networks, with the structures of the networks determined by the structures of the trees... The tree-informed initialization acts as a warm-start to the neural network training process, resulting in efficiently trained, accurate networks. These models, referred to as "deep jointly-informed neural networks" (DJINN), demonstrate high predictive performance for a variety of regression and classification datasets, and display comparable performance to Bayesian hyper-parameter optimization at a lower computational cost. By combining the user-friendly features of decision tree models with the flexibility and scalability of deep neural networks, DJINN is an attractive algorithm for training predictive models on a wide range of complex datasets. read more

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here