Deep Neural Networks for Object Detection

Deep Neural Networks (DNNs) have recently shown outstanding performance on the task of whole image classification. In this paper we go one step further and address the problem of object detection -- not only classifying but also precisely localizing objects of various classes using DNNs. We present a simple and yet powerful formulation of object detection as a regression to object masks. We define a multi-scale inference procedure which is able to produce a high-resolution object detection at a low cost by a few network applications. The approach achieves state-of-the-art performance on Pascal 2007 VOC.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here