Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels

While deep neural networks (DNN) based single image super-resolution (SISR) methods are rapidly gaining popularity, they are mainly designed for the widely-used bicubic degradation, and there still remains the fundamental challenge for them to super-resolve low-resolution (LR) image with arbitrary blur kernels. In the meanwhile, plug-and-play image restoration has been recognized with high flexibility due to its modular structure for easy plug-in of denoiser priors... (read more)

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet